Sunday, May 3, 2009

Electricity Generation



Grid management system

Electricity generated by a wind farm is normally fed into the national electric power transmission network. Individual turbines are interconnected with a medium voltage (usually 34.5 kV) power collection system and communications network. At a substation, this medium-voltage electrical current is increased in voltage with a transformer for connection to the high voltage transmission system. The surplus power produced by domestic microgenerators can, in some jurisdictions, be fed back into the network and sold back to the utility company, producing a retail credit for the consumer to offset their energy costs.


Induction generators, often used for wind power projects, require reactive power for excitation so substations used in wind-power collection systems include substantial capacitor banks for power factor correction. Different types of wind turbine generators behave differently during transmission grid disturbances, so extensive modelling of the dynamic electromechanical characteristics of a new wind farm is required by transmission system operators to ensure predictable stable behaviour during system faults (see: Low voltage ride through). In particular, induction generators cannot support the system voltage during faults, unlike steam or hydro turbine-driven synchronous generators (however, properly matched power factor correction capacitors along with electronic control of resonance can support induction generation without grid). Doubly-fed machines, or wind turbines with solid-state converters between the turbine generator and the collector system, have generally more desirable properties for grid interconnection. Transmission systems operators will supply a wind farm developer with a grid code to specify the requirements for interconnection to the transmission grid. This will include power factor, constancy of frequency and dynamic behaviour of the wind farm turbines during a system fault

Capacity factor

Since wind speed is not constant, a wind farm's annual energy production is never as much as the sum of the generator nameplate ratings multiplied by the total hours in a year. The ratio of actual productivity in a year to this theoretical maximum is called the capacity factor. Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favourable sites.[19] For example, a 1 megawatt turbine with a capacity factor of 35% will not produce 8,760 megawatt-hours in a year (1x24x365), but only 1x0.35x24x365 = 3,066 MWh, averaging to 0.35 MW. Online data is available for some locations and the capacity factor can be calculated from the yearly output.[20][21]

Unlike fueled generating plants, the capacity factor is limited by the inherent properties of wind. Capacity factors of other types of power plant are based mostly on fuel cost, with a small amount of downtime for maintenance. Nuclear plants have low incremental fuel cost, and so are run at full output and achieve a 90% capacity factor. Plants with higher fuel cost are throttled back to follow load. Gas turbine plants using natural gas as fuel may be very expensive to operate and may be run only to meet peak power demand. A gas turbine plant may have an annual capacity factor of 5-25% due to relatively high energy production cost.

According to a 2007 Stanford University study published in the Journal of Applied Meteorology and Climatology, interconnecting ten or more wind farms can allow an average of 33% of the total energy produced to be used as reliable, baseload electric power, as long as minimum criteria are met for wind speed and turbine height.

No comments:

Post a Comment